

NSF Funded Industry/University
Collaborative Research Center (IUCRC)

NextGen Research @ UMBC

Dr. Karuna P Joshi

UMBC Director

Associate Professor, IS

Dr. Milton Halem Senior Projects Manager Research Professor, CSEE

CENTER FOR ACCELERATED REAL TIME ANALYTICS

Real Time Compliance by Design

Al Models in Medical Devices

- HIPAA Part 2 Compliant Data Sharing using Blockchains
- Medical Device FDA Regulation Automation
- Cloud EHR access using Policy Reasoners and Attribute Based Encryption (ABE)

Environment Protection

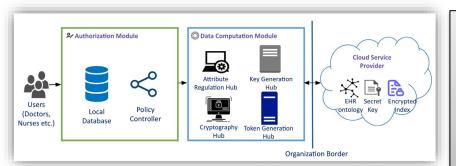
- •Wildfire Digital Twin Models
- Weather Prediction

Wearables / IoT

- NIST 8228 IoT Standards
- NISTIR 8259 A/B Technical Capabilities of IoT device
- Unified Cybersecurity Ontology (UCO)

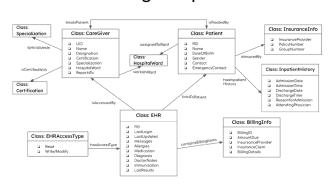
Data Protection Regulations

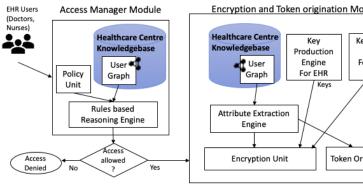
- •EU General Data Protection Regulation (GDPR)
- •NIST Data Privacy standards
- •Cyber Insurance
- •CCPA, COPPA
- •Banking and Mobile Wallets

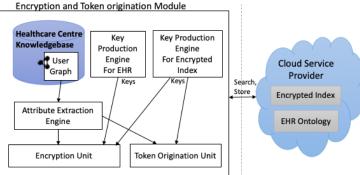

Automating Regulatory Science/Data Compliance using AI/ML

CENTER FOR ACCELERATED REAL TIME ANALYTICS

Attribute based Access for Cloud EHRS

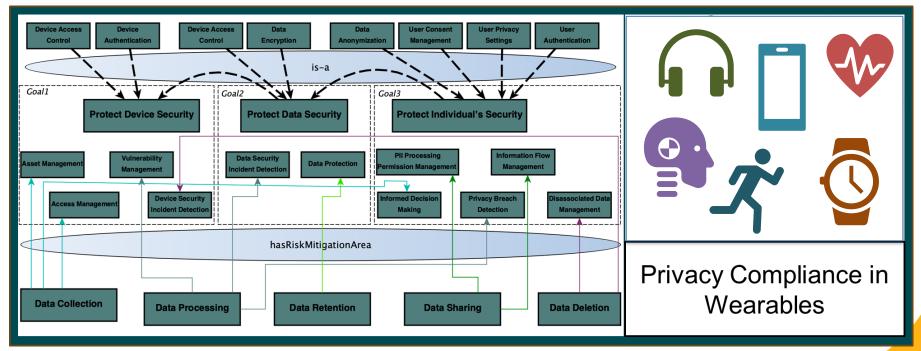

Secure CLOUD Electronic Health Record (EHR) that integrates Semantic Reasoners with Attribute Based Encryption (ABE)


- Fine-grained field-level access control
- Allows searching of encrypted records
- Revokes unwanted User attributes
- Handles data heterogeneity
- Flexible schema expansion
- Constant data retrieval performance



Dr. Karuna Joshi Primary Investigator

EHR Knowledge Graph Database



CENTER FOR ACCELERATED
REAL TIME ANALYTICS

Dr. Karuna Joshi, P

Securing Internet of Things (IoT)

AI/Knowledge graphs or Ontologies are used to enforce Real Time NIST 8228 compliance for IoT devices

CENTER FOR ACCELERATED REAL TIME ANALYTICS

Primary investigators

Dr. Anupam Joshi

Dr. Tim Finin

Optimizing Knowledge Graph Reasoning for High-Performance Computing (HPC)

Initial evaluation of efficiency of semantic knowledge graph (KG) systems for large-scale, real-world datasets using HPC

- Hardware: AMD EPYC 7742 64-Core Processor, 2TB memory
- KG systems tested: Apache Jena, RDFox
- Initial data: Wikidata "truthy" dataset with ~1.3B triples
- SPARQL queries: different complexity of queries from wiki logs
- Metrics: query count, timeouts, error, average and median time

Next tasks: explore ways to speed up queries, e.g.:

- Techniques for optimizing SPARQL queries
- Partition large graphs and query in parallel
- Precompute and store key relations
- Graph embeddings for approximate answers

PREFIX wd: PREFIX wdt: PREFIX wdt: PREFIX wd: http://www.wikidata.org/prop/direct/

{ wd:Q1656682 ((wdt:P279 | wdt:P31) / (wdt:P279* | wdt:P31*)) ?x1.}

CENTER FOR ACCELERATED REAL TIME ANALYTICS

Primary investigators

Dr. Ryan Robucci

Dr. Mohamed Younis

RISC-V Development, Benchmarking, and

Assessment Platform

- Prototyping and Simulation/Benchmarking of RISC-V with workloads
- Compare Benchmarking Approaches in Simulation and FPGA Hardware
- Formal Verification of hardware-Software system behavior from code descriptions
- Custom-instructions for RISC-V architecture for FPGA and IC Design for reliable & performant edge processing
- Supporting FPGA coursework platform for RISC-V experimentation in hardware-software codesign
- Summer 2024: Hosting in-person gem5† simulator workshop at UMBC

Wildfire Digital Twin Architecture

Dr. Milton Halem Primary Investigator

Satellite Observations

Landsat-9, 8, 7

Sentinel-2, 4 MODIS

VIIRS

ERA5, GFED, FINN

GOES-R ABI

GNSS-R SAR, NOAA AMS **Ground Data Sets**

Ceilometers, Wind Lidars

Radar

Physical

Wildfires

USFS/NFMD, USGS/NRCS Soils

Data Assimilation

Dynamic Models

HRRR5, GFS, CMIP 5,6 NUWRF-SFire Chem, WRF AI/ML Models FCN, Climax, WaveletUnet

Validation

Measurement Guidance

Simulation Models

Real Time

Virtual

Wildfires

Computing Resources

Uncertainty

Decision-making

Funded grant

Datasets California "Complex" Fire, Aug 2020

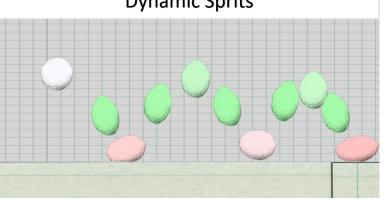
Canadian Wildfires, June 2023 Maui Wildfires, Aug 2023 Boreal Wildfires, 2021

CENTER FOR ACCELERATED
REAL TIME ANALYTICS

Dr. Milton Halem Primary Investigator

Scientific Analysis using AI and Digital Twins

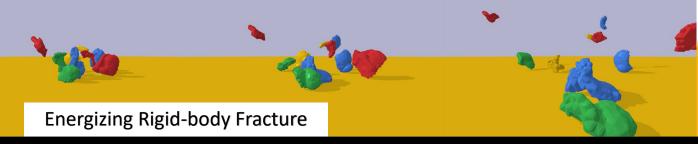
- NASA funded Wildfire Digital Twins
 - Developed Wildfire Digital Twin Architecture
 - Conducted NUWRF-SFire Digital Twin Forecast for August Complex (2020), Canadian Wildfires, Maui Wildfire
 - Ported NASA Unified Weather Research Forecast model to a Cluster
 - First (?) Hi-Res (5km) AI Regional Weather Forecast Model
- NOAA Air Quality AI based Forecast Bias Corrections
 - Developed AI based Bias Correction for CMAQ operational forecast
- CARTA NASA member AI based Projects
 - <u>First Monthly mean Annual Forecast of Surface Temperature</u>
 - Produced <u>first</u> Al-based OSSE (Observing System Simulation Exp.)



Interactive Animation of Soft Bodies

Example-based Plastic Deformations

Dynamic Sprits



CENTER FOR ACCELERATED **REAL TIME ANALYTICS**

Dr. Adam Bargteil **Primary investigator**

Physics + Scientific Computing + HCI+ Visualization

Blockchain for Supply Chain Asset Management and Data Security

- A permissioned blockchain system is being used as a way to instill true confidence in the data that is gathered by IoT devices. This imbues each IoT device with an identity that is immutable and traceable throughout its life.
- Having begun designing and implementing an architecture to augment the blockchain system with a distributed object storage system for bulk data storage, using the blockchain for maintaining metadata related to said data store.

Dr. Yaacov Yesha and Lawrence Sebald

Collaborate with Us

Dr. Karuna P Joshi Karuna.joshi@umbc.edu

Dr. Milton Halem
Halem@umbc.edu

Dr. Anupam Joshi joshi@umbc.edu

Dr. Tim Finin finin@umbc.edu

Dr. Mohamed Younis younis@umbc.edu

Dr. Ryan Robucci robucci@umbc.edu

Dr. Adam Bargteil adamb@umbc.edu

Dr. Yaacov Yesha yayesha@umbc.edu

More Details available at

Carta.umbc.edu